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THE THEORY OF ROTATIONALLY
SYMMETRIC PLASTIC SHELLS

By Philip G. Hodge, Jr.

ABSTRACT

The defining equations for a rigid/perfectly-plastic shell
are derived from basic principles. On the basis of a single geo-
metric assumption for the velocity field, generalized strain rates
and stresses are defined and equilibrium relations deduced. Shell
yield conditions and the flow law are discussed in general terms and
then specifically for piecewise linear yield conditions.

Preceding the general shell problem, the theory of beams
under bending and axial forces is discussed to give a general in-
sight into plastic structural behavior. The paper closes with an
application to cylindrical shells and a discussion of areas for future
development.
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l. INTRODUCTION

For historical reasons, the structural theory of shells has, until
recently, been exclusively an elastic theory. Thus, in the usual develop-
ment, the assumptions of a linear theory of elasticity and of shell theory
have been introduced at the outset, and equations have been derived which
apparently depend upon both of these sets of assumptions. As a result,
it is desirable to begin an inelastic theory of shells by a consideration of
basic principles. In the interests of possible other inelastic theories, the
basic kinematic and static equations of shell theory have been derived in
Sec. ¥ by a methiod which 18 iridépendent of any particular constitutive
equations of the material. The final results will, of course, come as
no surprise to those familar with classical elastic shell theory, but it is
not obvious that the full extent of their generality has always been appreci-

ated previously.

Although aiming for maximum generality of material assumptions,
it has seemed desirable to limit the treatment here to a rotationally symmetri
shell under rotationally symmetric loading with no torque. This limitation
considerably simplifies the mathematical presentation of the fundamental
concepts presented, although the concepts themselves are evidently appli-
cable to the more general case of arbitrary shells under arbitrary loadings.
Further justification lies in the fact that very few problems have been solved

*
to date which do not fall into the rotationally symmetric catagory. For

* The only two exceptions known to the author are a paper by Fialkow [ 1]

in which bounds are found on a cylindrical roof, and one by Hodge and
Panarelli [ 2] concerned with a cylindrical shell under pressure, end load,
and torque. (Numbers in brackets refer to the list of references collected at
the end of the paper).

PSS



o a i

o s,

B

brevity of notation, we shall use the unmodified term '"shell” to refer to

the fully rotationally symmetric catagory defined above.

By way of introduction to the shell problem, we present in
Sec. 2 a development of the general and plastic theory of beams under
combined bending and axial force which was first formulated by Onat

and Prager [3, 4] . In this much simpler case, we can show in some

detail how a structural theory is derived from a three-dimensional theory.

A single kinematical assumption is made concerning the deformation or
velocity field. Using this assumption and the principle of virtual work,

one is led naturally to the definition of generalized strain rates and

generalized stresses. As first pointed out by Prager {3}, the theorems - -

of limit analysis apply immediately to such variables; Hodge [ 6, 7] has
shown that the general theory of elasticity and various models of plasti-

city can all be conveniently developed in terms of generalized variables.

When the constitutive equations of a rigid/perfectly-plastic
material are inserted into the beam problem, the concept and principal
properties of the yield curve and plastic flow law are all derived in a
simple manner. That these properties are all valid for any number’ of
generalized strain-rate and stress variables is certainly plausible. Al-
though they can all be proved based upon Drucker's ''stability postulate'
(8, 9], it has seemed more in keeping with the spirit of the present paper
to assume them an& develop from them the specific plastic constitutive

equations for the shell problem, as is done in Sec. 4.

The derivation of yield conditions for plastic shells has
been the subject of numerous papers. * Although, the resulting yield

conditions differ greatly in mathematical complexity, ‘the theorems of

%* An account of most of these, together with original source references,
can be found in [ 10] .
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limit analysis can be invoked to bound their differences in predictions.
Since very little direct experimental evidence is available upon which
fo base a reasonable choice, it has seemed advisable to concentrate
attention upon the mathematically simple class of piecewise-linear
yield conditions in Sec. 5. Not only does this greatly simplify the
solution of problems, but, as is shown, the results can be used to
bound the yield-point loads of any conceivable material yield condition.
The primary purpose of the present paper is to survey the
theory of plastic shells, rather than to give a catalogue of problem
solutions. However, in the interest of providing a typical application
which is mathematically simple, we have included an example concerned

with a cylindrical shell in Sec. 6.

The treatment in Sections 4 through 6 was intentionally res-
tricted to an idealized rigid/perfectly-plastic material. The final section

of the paper discusses the reasons for this lirnitation and indicates quali-

tatively some possible generalizations.



2, BEAM THEORY

Ag a prototype of shell theory, we shall first examine the
much simpler case of an initially Qtraight beam under the influence of
bending moment M and direct stress N. We shall make the initial
assumption that plane normal sections remain inextensible, plane, and
normal to the centroidal aris. At any cross section x, then the velo-

city field is

]
ux=V-zW u'y=0 uz=W (2.1)

where V. and W. are functions of x.

The strain-rate tensor field associated with (2. 1) has the

axial strain as its only non-vanishing component:
U n
€ =V - zW (ZQ Z)
xX

so that the total internal rate of work reduces to

L L "
LA fv"ij €5 dV=6f }{ax(v -zW ) dA dx (2.3)

Since V and W depend only on x, we may rewrite (2. 3) in the form

L ] 11)
wint=of (NV - MW ) dx (2.4)
where
N=[ o dA M=[ o zdA (2.5)
A X A X

Since N and M are the stress resultants for direct stress
and bending moments, respectively, they are an obvious choice for

generalized stresses for the beam problem. It then follows from Prager
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[5] that the generalized strain rate should be

] 1"
e=V K=-W (2. 6)
whence we can rewrite (2.2) in the form
etz K (2.7)

An alternative form of (2. 4) is obtained by integrating it

twice by parts:
L ] " ] 1 L
W, =-J(NV+MW)dx + [NV + MW - MW ] (2.8)
int 0 0

The external rate of work may be written

L , L
W . =] PWdx + [NV + §W - MW ] (2.9)
ext 0 0

where P is the applied normal load and N, §, and M are, respectively,
the axial force, shear force, and bending moinents applied at the beam

ends.

The principle of virtual work rate states that the internal and
external work rates must be equal for all sufficiently continuous velocity

fields V, W. Obviously this condition requires

"
N =0 M +P=0 0< x<L,
(2.10)

N=N M =S5 M=M x=0,x=L

The development thus far is independent of any material property.
Since only the axial force o, enters in the definition of the generalized
stresses, we shall assume that it is the only stress to influence the mater-

ial behavior. In particular, for a rigid/perfectly-plastic material, the
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the yield behavior is fully characterized by the yleld stress %

1f 9 =9 at an element, the element may have any positive axial
strain rate € i if 9. == % it may have any negative axial strain rate
rate; if "0y <0, <% the element must remain rigid; stress states

la'x l>t10 are not tolerated. In other words the strain rate can be

non-zero only if o = % for positive €, and 0=~ % for negative ex'

Since (2. 7) describes a strain rate which is linear in z, there

will be a particular value z = { H at which €. = 0. For all z onone side

tH, €, will be positive and hence o = O whereas on the other

side, €, will be negative and hence ¢ = - dps Assuming for definite-
ness that K is positive, we see that the strain-rate and stress
distributions must have one of the forms shown in Fig. 1. Therefore,

it follows from (2.5), (2. 6), and Fig. 1 that

_ H
N=uo-fH B(z) dz = N, M=0

e/H>K >0 for t<-1 (2.11a)

tH H.

N--co[ -f B(z) dz + [ B(z) dz]

- tH
tH H

M=00[ -f zB(z)dz + [ zB(z)dz]
-H tH

e/(-tH) =K=0 for -1=st=l (2.11b)

H
N=-00!HB(z)dz=-I\b M=0

-e/H 2K =0 for 1=¢ (2.11c)

where B(z) is the width of the section.



Equation (2.11b) defines a curve in the N, M plane. If we consider
the case K< 0, - 1 s{ =1, we obtain the image in the origin of (2.11b).
Evidently the sum of these two curves is closed. This resulting closed
curve is called the vield curve. If the stress point N, M is on the yield
curve, plastic flow can take place; if the stress point is inside the curve,
the section is rigid; stress points outside of the yield curve are not tolorated.

Figure 2 shows the resulting yield curve for a rectangular section.
it follows from (2.11b) that
dM/dN = ¢t H' : (2. 12)
whence the yield curve is e,v,isléz;tly convex. .Fuithzxg since
Kle=-1/tH (2.13).

the ''strain-rate vector' with components (e. K) is normal td the yield

curve at the stress point ¢{.
Equations (2.1la) give the single stress point (No, 0) but permit
a variety of strain-rate vectors: If { tends to -1 with positive K, then

it follows from (2. 13) that

lim (e. K) = 7\1 (1, 1/H) . : (2. 14a)
t>-1

where A is an arbit rary positive scalar. Similarly, if K is negative,

lim (e, K) = A (1, - 1/H) _ ‘ (2.14b)
L‘-b -1

where AZ 20. From the inequality (2. 11a) on e/H and K, together with the

corresponding inequality

e/H=z-K=0
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for negative K, we seethat at { = -1, e and K are restricted only

by
e/H= IK|lz0 (2.15)

Finally, it is obvious that the sum of the two vectors (2.14) will satisfy
(2.15) for any non-negative choice of M and A,. Typical strain-rate
vectors are shown in Fig. 2 for a regular point B governed by (2.11lb)

and for a singular point A governed by (2. 11a).

For the beam problem considered here, we have started with a
simple geometrical assumption and with the tensile behavic;r of the material.
We frave then developsd e equllibilira é"c‘s‘ﬁaiﬁaﬁé“." ‘the ‘cdﬁi’i‘e:&'ﬁ?”d‘i""&ie” T
yield curve, the normalit& of the strain-rate vector of a regular point,
and the behavior of the strain-rate vector at a singular point. It can be
sho§vn thaf these concepts are all carried over to the more general problem
of rotationally symmetrié plé,stic shells. We shall use thesé facts in the

next two sections.
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3. BASIC EQUATIONS OF SHELL THEORY

The theory of elastic shells has been thoroughly studied, whereas
investigations of inelastic shells are quite recent. As a result, it is
not always clear which aspects of elastic shell theory are dependent upon
the elastic constitutive equations and which are equally valid for other
materials. Therefore, we shall begin this dizcussion by deriving the
fundamental rotationally symmetric shell equations in a manner which makes
no r'eference Vto any constitutive equatioﬁs. The results will thus be appli-
cable to shells of any material and hence, in particular, to a rigid/perfectly-

plastic material.

.A single kinematic assumption is made concerning the t)"pe of de-
formation which the shell undergoes, n#mely:
Initially straight normals to
the undeformed middle surface
remain straight, inextensible, (3.1)
and normal to the aeformed

middle surface.

The degree of validity of this assumption as applied to a real physical struc-
ture‘ determines the validity of calling the.structure a sheli in the sense used
in this paper. The validity of (3. 1) cannot be checked internally on the basis
of shell theory but must be done on the basis of complete three-dimensional -
solutions, experimental evidence, and/or sound engineering judgement. It is
certainly conceivable that its validity should depend not only on the geometrical
parameters such as thickness and radii of curvature, but on the type of mater-

- ial being considered, i.e., elastic, plastic, eta.
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A detailed discussion of the situations under which (3.1) is a
reasonable approximation to reality would be beyond the scope of the
present paper, even if it could be done in any generality. Therefore, in
the remainder of the present development we shall assume (3. 1) and in-

vestigate its consequences.

The method of attack is similar to that used in the previous section.
We shall first find the expressions for linear strai.n-.rate components
for a general deformation of a shell. Next we particularize these 'strain;
rate velocity relations in accord with assumption (3. l')  The internal
work rate associated with an arbitrary displacement field subject to (3. 1)
is then computed and shown to naturally suggest the generalized strain-
rate variables appropriate to the rotationally. symmetric shell problem.
Finally, the pri’nciple of virtual work is invoked to define the generalized
stress variables and to obtain the eqnilibrium equations which they must

satisfy.

We consider an ‘arbitrary longitudinal plane of tlie shell and let O
be an arbit rary point on the center line, Fig. 3‘. Tlxe Acoordinate ¢ is
defined as the angle between tlie axis and a. normal to the center line through
O; the coordinate { is measured inward along the normal from the center
line. Let points P and R have the same ¢ coordinate as O w1th £
coordinates ¢ and £ + A{ , respectively; let Q have coordinates

¢+ A¢ and §{ , all as shown in Fig. 3.

It is now convenient to introduce a set of Cartesian coordinates

r, z in the plane of Figs 3. The following vectors may be readily identified:
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—
PQ =(R, -§)A ¢ (cos ¢, sin ¢)
(3. 2)
FI?.=A£ (-sin ¢, cos @)

Consider next a small vector velocity field 3. If LR and ug

are the components of 4, in the { and ¢ directions, then 4 may be re-

ferredto r and z components by

u = (sm ¢, cos¢)+u (cos ¢, sin ¢) (3.3)

~

L ' )
Let P, Q, and R . denote the respective positions of P, Q, and R after

the 'displacement. Then
-——’ ——lp -—-’ -"'" ——lpp
PQ PQ+QQ PP PQ+u(Q)-u(P)

hence. in view of Eqs. (3. 2) and (3 3)
—y

P Q' = (R, - £) a o[+ 'ﬁ.lL:-—EE') (cos ¢, sin ¢) + (u¢+un') (-sin ¢, cos $)]
'-'__', (3. 4)

PR =4¢[(1+0)(-sin ¢, cos 9) + 1y (cos ¢ sin ¢)] |
Here we have regarded A ¢ and A¢ as infinitesimals and have denoted.

differentiation with respect to ¢ and { by a prime and a dot, respectively.

' . o
I lu/Ryl, lu /Ryl and Ijx_’l are all small compared to unity we can

easily deduce from (3. 4) and (3, 2) that

R ) 'u(p"un
IPQl = (R1'§')A¢(1+—El—_—§—)

| PRI =4¢ (1+8 ) (3.5)
NGRS +

PQ * PR =A¢At (Rl-g)({;¢+;.p__%_

| PQl =(R, - § )A¢ IPR| = Ag P_g'PR=0
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Extensional strain rate is defined as the rate of change in length
per unit length of a line element. Therefore the extensional strain rate

of an element in the direction of -I;K is

1t .
e = | PRI-IPRI _ o (3. 6a)

n | PR | n

and, in similar fashion

! ' u l_u

1

" The extenstonal strafm rate In the clFctrniféerential direction 1s ‘thé Fate sy T

increase in the circumference of a circle thrbugh P divided by the original '

circumference. Since the circumference is proportional to the radius, we
—-’

. : omnuly O
may equally well use the r components of the vectors CP and CP to

define

—
cpP)_ -(CP) uy cosy - U sind (3 ¢

€, = =
¢ (P (R, - &) sin ¢

r

The shear strain rate is defined as the rate of change in an

initially right angle. In view of the restriction to rotational symmetry

I ='y¢o =0 (3. 6d)

whereas the remaining shear strain rate is

[ ] [] ] u u'
'Y¢=P?.rpl3- ={1¢ + L (3. be)
n | PQIIPRI R, - &
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Equations (3. 6) give the strain rate components at any point in
the shell for an arbitrary displacement field. We now introduce the
assumption (3. 1). If Vn and V¢ represent the velocities of a point O

on the center line, then it follows from Fig. 4 that at P
n n

u=V { u¢ =V¢ --Rﬁ'l-—-(V¢+Vn') (3.7)

Substituting (3. 7) into (3. 6) we find that for the particiﬂar velocity

field being considered,

a Yno ® Y¢0% Tnp =0
Vet -V peats . YotV (a8

Ry-b Ry R

v.'!'-V vV, +Vv 'Y
€ = ¢ n - g . n
¢ Rl'g Rl-E . 1E1

The internal rate of work associated with a rotationally symmetric

shell may be written

ot H 27
' Wint = S s S‘ Wint (Rl - ¢) sin ¢d9§£d¢ (3.9)
p -H 0

where the shell extends from ¢ = B8 to ¢ = and ié of thickness Z2H; here

Wit ST, €, tT9 € +0, €¢+Tn¢7n¢+ TooY96 *TonYon

We substitute the particular strain rate field (3.8) into (3. 9) and note that
Vn. V¢, R,l.and Rz are independent of { and @ to write the resulting ex-

pression in the form




R L e SR T e

+

[:’}'Rl—vnj [‘z— S Szw _qbﬁ_'_i dM&J
[R;d’ ( ][z .3 5 Eco Rle dgdg]

_ - - H 2=
VA R AN Nt -4
) i . =H O

+

+
ﬁ -
1
|
i
[
\

(3.10)
The factors in the first bracket of each term of (3. 10) are chosen as'
our generalized'strain.,rates. -They may be given simple physical interpreta-

tions as extension rates and approximate curvature rates of the middle surface.

Thus
eé = (‘V¢ cot ¢ - V_)/R, ey =V, - VIR
K. o=. SOLO [V +V .. L ver V)
8 R, . (‘—_ R, = “ —R =

(3. 11a)
As first pointed out by Prager [ 5], generalized stresses and strain
 rates must be chosen so that the internal work rate is proportional to their

scalar product. Therefore, we define the second bracketed factor of each

term as a generalized stress:
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H H

_ y Rl -E -g

Na = ) 0'0 T d.ﬁ N¢ = 0'¢ Tz—— de
- -H
(3.11b)
H H
R - ¢

_ 1 - ¢ N ®

M, -SI; oy R d¢ M¢-I§ £a¢ X d¢

where we have assumed for simplicity that the stress distribution also

is rotationally symmetric.

We observe that (3. 11) are precisely the total force per unit length

and total moment per unit length about the center line which are trans-

"~ mitted across an elerment of the shell. ‘Therefore, the definitions (3. 1T

are in agreement with the usual definitions of stress resultants.

External work may be done on the shell by surface loads applied
at { = + H, by edge loads applied at ¢ = 8 and ¢ =&, or by body
forces. We denote by Tn and T¢ tl}e force per unit area components trans-
mitte‘d across a surface § = const. from greater to lesser values of £,
by Sn and S¢ similar forces across a surface ¢ = const., and by Fn and
F¢ the body force per unit volume components. Then the external rate at

which work is done during an arbitrary symmetric deformation is

2r  H ol
W= {[S‘ (5,4, +Sgu) (R~ §) sin $a¢]
0 -H
(3.12)

[S“‘ ' L ¢ 7
+. p (Tnun+T¢“¢) (Rl- ) (RZ- )sin¢d¢.H

§1

8 -H (Fn“n + F¢u¢) (R, - ) (R, -£ ) sin ¢dé d¢} de
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We substitute the particular velocity field (3. 7) into (3. 12) and re-

arrange the terms to obtain

ol s 5 e
H

-‘E;l_vn"{é;gsqb RZR: dﬁ)} stin¢J“

B
‘+£“{;n([ré-nl%::' "“”"Rz ] 5 n —.—e RZR: ‘”) o
A 5] )
+v¢([T¢ Rll R2 . +§{ F¢ TT d¢

JH O H
ot Vn 178 Rt (' pp R-& R - .
([§T¢ Rz . _.L ¢ X X & IR R, sin ¢d ¢

(3.13)

Just as the factors in (3. 10) were recognized as resultant internal forces
and moments, so the factors in parentheses in (3. 13) may be recognized

as resultant applied forces and couples. Thus we are led to define bound-

ary forces

(3. 14)
§
d§

= yH55¢ e
-H

at the edges ¢ = 8 and ¢ =& of the shell, and distributed loads and
couple by




[ e

i Ry-¢  Ry-d H p.t R-¢
B [Tn ®m Rl )RR ke
R -¢& R -4 H -t R,-&
p¢=[-r¢ ._]__.._.R‘1 , -E___H +:§; F¢ RlRl Ez_df
H
) ] R -t R, -&
c¢=[g-r¢ R1R15 Réz‘]“ +§{ Fy B X d¢
-H
(3. 14b)

for B <¢<a& . The definitions (3. 14) are consistent with the usual
physically based definitions and include the possibility of a couple

C¢ being distributed over the surface.

We next set the internal rate of work (3. 10) equal to the external
rate of work (3. 13), using the definitions (3. 11) and (3. 14). Integrat-
ing the term involving M¢ by parts we can write the resulting equation
in the form

o

1 : '

5 (wext - wint) =S {\’4,(-17.l NO cos ¢ + R.l Rz P¢ sin ¢) - V‘P R2 N¢ sin ¢
B

+Vn(Rl N9 sintl’+R2 N¢ sin¢+R1 R2 Pn sin ¢)

V¢+V' O .
.TEER1M0c08¢+(RZM¢sin¢) +R1R2C¢sin¢]}d¢

v v'!
+ [{Vn§+v¢n¢+ _L;:l_"_ (M¢-H¢)} Rzlin¢%“= 0

(3. 15)
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The group of terms in the bracket in (3.‘ 15) suggest the definition of a
quantity S by

Ry R, S sin ¢ =(R2M¢sin¢)'- R, Mg cos$ + R R, C, sin¢ (3. 16)

whence a further integration by parts of (3. 15) leads to.

L)
S'{qu[(Rz N¢ sin¢)' -R; N, cos¢-RzS sin$ + R, R, P¢sin¢]
B

+V (R, S sin$) + R, Nysin¢ + R, Nysin¢+ R R, P sin¢]} d¢
' Vyt V! o 31D
=LV, (5-5) + Vy (NeRy) - —— (M- ¥} R, sind] g

If Eq. (3.17) is to be valid for all sufficiently continuous velocity functions
V¢ and Vn. then the two factors in square brackets on the left-hand side
must vanish indentically in ¢ and the three parenthentical factors on the

right-hand side must vanish at the shell edges. Thus

(R2N¢sin¢)' - R1Na cos¢-R283in¢+RleP¢sin¢=0

(3.'18)
(RZSBin¢)'+RlNo Bin¢+RzN¢sin¢+RlR2Pnsin¢=0
for all ¢, and at ¢ = and ¢ = 8
s=5 N, =R, M, =M, (3. 19)

Equations (3. 16) and (3. 18) are the familiar equations of equilibrium
for a rotationally symmetric shell (in the usual case C¢ = 0), and (3.19)
express the fact that shear force, normal direct stress, and normal

bending moment must each be continuous at the boundary.
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In the following, it will prove convenient to deal exclusively

with dimensionless quantities. To this end we denote by N, the
maximum direct stress which the shell can withstand in uniaxial tension

and by MO the maximum uniaxial bending moment and define

n0=N0/N0 %=N¢/NO
my =Mp /Mo m¢=M¢/Mo (3.20a)
"Q =(MO/N0)K9 K¢=(M0/NO)K¢

Further we let A represent a typical dimension of the shell and define

r=R/IA rl=R1/A r, = R,/A
v =V /A vy = Vol A h = My/AN,
pnzpnA/No p¢=P¢A/I\b 8 =S/]\b
2 2
int = Wi/ 2 7 NpA Woxt = Wext /270pA (3. 20b)

In terms of these dimensionless quantities, the generalized strain

rates and stresses (3. 11) become

cot ¢ - v, - ‘
ea=:’£_r__i e¢=—¢;_ll. (3.21a)
2 1 '
v'i+v
_ heotdfY +V¢ K. =-B ;n__ 9
Ko = - rczo (= ) ¢ T T
H , H
1 r - b/A 1 g - bA
v § 0 T et er i e
H H
1 r, - 4/A 1 r, - §/A
= ; S 50' rl d£ m¢ ‘% P €0¢ rz d€

(3.21b)
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and the equilibrium equations (3. 16) and (3. 18) (with C¢ = 0) may be

written
(rn¢)' -rngcosd-rs+ Trp, = 0
(rs)' + r)n, sin ¢ + rng + rrp, = 0 (3.22)
h{ (rmy)' - rmy cos ¢]-rs =0

where

r=r, sind ' (3. 23)

is the dimensionless distance from the axis.



4. CONSTITUTIVE EQUATIONS OF
PLASTIC SHELL THEORY

The basic unknowns of shell theory are the four generalized
stresses n,, Ty ma. m¢. the shear stress s, and the velocity
components o and v, Since Eqs. (3. 16) and (3. 18) provide only
three equations for the seven unknowns, it is necessary to provide
four more equations in these same unknowns which characterize

the particular shell material.

‘For a linear elastic ma.terial these constitutive equations are
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trivally derived. Hooke's law is substituted into (3. 11b) to give general-
ized stresses in terms of material strains, and these latter are expressed
in terms of displacements by expressions analogous to (3.8). Itis time-
saving to express the results in terms of generalized strains by utiliz-

ing the displacement form of (3. 21a).

For the plastic material, it is necessary to first express the
yield condition in terms of the generalized stresses. For any assumed
form of the material yield condition, the shell yield condition can be
found, at least in theory. Assuming that H/R, and H/R, are negligible
compared to unity, Onat and Prager [11] have found the yield condition
for a uniform shell whose material s?tisfies the Tresca yield condition.
Similar treatments of the Mises yield condition applied to shell problems
have been carried out by Hodge and Panarelli [ 12,2] . However, the
results are so complex as to have been relatively little used in the solution
of problems. Among the few complete solutions (as opposed to bounds
found by limit analysis) are those by Hopkins and Wang [ 13] for a

2l
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flat plate, Hodge and Sawczuk [ 14] for a cylindrical shell, and Onat

and Lance [15, 16] for a nearly flat cone.

In view of the difficulty of obtaining complete solutions ac-
cording to the Tresca or Mises uniform shell yield conditions,
considerable interest has been expressed in the use of approximate
vield conditions. An approximate yield condition can be viewed in
either of two lights. On the one hand, by means of the Bounding
Surface Lemma [ 10] of limit analysis, it may be used to provide
upper and lower bounds on the yield-point load according to some
more exact yield condition. General factors for this use have been .

found by Hodge and Sankaranarayanan [ 17, 18]. Alternatively, one may

visualize an ideal shell made of a modified material such that the approxi-
mate yield condition for the real shell becomes the exact yield condition
for the ideal shell. If the material difference between the real and ideal
shell are not too great, then the behavior of the ideal shell should pro-

vide valuable information concerning the behavior of the real shell.

Further justification for the use of approximate yield conditions
for shells is derived from the fact that either the Tresca or Mises
material yield condition already represents an approximation to reality,
and hence it is misleading to speak of a shell yield condition based on

either of them‘as Ye.xact''.

Once the yield condition has been decided upon, it provides one
of the necessary four constitutive equations. The remaining equations
are obtained from the flow law. The plastic potential flow law was

first proposed by Mises [ 19] and later shown to be a consequence
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of Drucker's postulates for a stable material (8, 9]. Interms of
the generalized stresses and strains defined by (3.21), we may
represent the yield condition as a surface in a four-dimensional

generalized stress space in the form
£ (nop %' ma. m¢) = 1 (4. 1’
The flow law then states that the strain rate-vector

=(e,y €,y K,y K (4. 2)
‘2’ 0° o "o » d’)
must be directed along the outward normal to the yield surface at

the stress point. Thus
q=AVSf (4. 3)
A

where A is a non;negative scalar. Since A is unknown Eq. (4. 3)
is equivelent to three scalar equations in terms of the unknowns
Ny n¢a mg, m¢. Vg v, 28 required.

At some points of the yield surface, the normal may not be
uniquely defined. If the stress point is in a ''crease'’ formed by the

intersection of two smooth surfaces

£, =1 £, =1 (4. 4)

then the strain-rate vector can be any combination with non-negative

coefficients of the normals to the two surfaces forming the crease:
= A, VI, + A, V£ 4.5
a= 2 Vi +2, V] (4. 5)
Observe that in this case Eqs. (4. 4) for the yield condition provide two

constitutive equations; since 7&1 and AZ are now independent unknowns,

(4. 5) provides only the necessary two remaining equations.
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In degenerate cases the above reasoning may be generalized
to higher order intersections which result in more yleld conditions
of the form (4. 4) and more unknown A's in the flow law. However,
we observe that Eqs. (3.22) and (4. 4) provide five equations con-
taining only Ngs Ny mé » Mg, and s as unknowns, and that the velocity
unknowns v and Vg4 occur only in the two independent equations of
(4.5). Therefore, any hypothesis which added to (4. 4) at the expense
of (4.5) would generally lead to over-determined stresses and under-

determined velocities and hence be unsolvable.

" The ab6Ve Feasonlig has an Tnteresting result in'the case of e

a piecewise-linear yleld surface. If (4. 1) represents a linear surface,
then VI will be a constant. It follows that (3.22) and (4. 1) will provide
four equations for five stress variables whereas (4. 3) will provide three
equations containing only Ve and A Therefore, except possibly in
certain degenerate cases, if the yield condition is piecewise linear, the

constitutive equations must be of the form (4. 4) and (4. 5).
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5. PIECEWISE LINEAR YIELD CONDITIONS

Based upon previous work by Hill [20] and Iviev[21],
Haythornthwaite [22] has shown that any material yield Eondition
may be conveniently bounded by two piecewise linear material yield
conditions when the only physical information is a single test measure-
ment. We consider a representation in principle stress space as

shown in Fig. 5 and suppose the point A to be a measured tensile

yield stress 0,. Following Haythornthwaite, we assume only that the

e RN TN iy T N ORI SN T B Tt

material is isotropic with equal tensile and compressive yield stresses,
that it satisfies Drucker's stability postulate, [8, 9], and that the
sharply defined rigid-perfectly plastic yield-point load represents
useful information. It follows that the yield surface must be convex
with symmetry every 30°. Therefore, if the tensile yield stress

% is known, the yield surface must pass through point A in Fig. 5 and
must lie between the solid and dashed curves. The inner solid curve

is Tresca's [ 23] condition of maximum shearing stress
max [ |ol-0'2|. IO'Z-03I. |0'3-a'1|]=.¢r° (5.1)
whereas the outer dashed curve is Hill's [ 20] condition of maximum
reduced stress
max lg - (0, + 0, +0,)/3] = o, i=1,2,3 (5.2)
In the analysis of thin plates or shells where the state of stress

is approximately plane, the information in Fig. 5 may be represented

in a 0y, o, plane. For flat plates under bending, the yield relation be-

25
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tween principal bending moments is the same as that between principal
stresses, so that Haythornthwaite [ 22] was able to use the bounding
surface lemma to bound the yield-point load of a circular plate under

uniform pressure.

If both bending moments and direct stresses are present, as is
generally the case for curved shells, the yield surface will no longer
have the simple character it does in a 0)» O, space. Rather, four stress

dimensions will be required, and, due to the differences in integration

generally be non-linear even if the material yield condition is piecewise

linear.

One method of regaining a piecewise-linear problem is to
approximate the uniform shell by an idealized sandwich one. An idealized
sandwich shell consists of two sheets each of thickness t', separated
by a core of thickness h'. The sheets each have a tensile yield stress
0'0' and carry no shear; the core has no in-plane strength but is sufficient-
ly strong in transverse shear to maintain separation of the sheets. The
sheet thickness t' is assumed sufficiently small so that the stresses do

not vary across each sheet.

If cﬁi (8= 1, 2) denote the principal stresses in the top and bottom
sheet respectively, the resultant forces and moments are -
= . Uy = - .ot (I .
Ng (¢J"3 +ap)t MB -}(aﬁ .0'B)ht (5.3)

Evidently Eqs. (5.3) can be solved for the four stresses cp* as linear

functions of the forces Nﬁ and moments Mp « It follows that any
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material yield condition which is piecewise linear in the stresses

will be piecewise linear in Np and Mp + Therefore, it can be re-

presented as a convex polyhedron in a four dimensional generalized

stress space with axes N, and M, .

B [
On the other hand, for a uniform shell of thickness h and yield

stress 0'0, the stress resultants are

h/2 h/2

Nﬁ = 5 o‘de Mﬁ = 3 a'ﬁ zdz (5.4)
-h/2 -h/2

» avanr

stituted into the material yield condition to obtain the yield surface in

generalized stress space. Whether the material yield condition is
piecewise linear or not, the yield surface will be convex but will

not generally be a polyhedron,

We wish to investigate the relation between the yield surface of the

uniform shell and the yield polyhedron of the sandwich shell. To this end
we first note that if a single force or single moment is acting and

produces yield, then its magnitude is

Ny =20, t My =dph t
for the sandwich shell and

No=aoh M0=(l/4) aoh

for the uniform shell.

2

The usual method of choosing the sandwich shell parameters
is so that [7],

NO =No Mo aMo (5.5)
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i. e,

=

[}
[0

[~

%'t = o (5. 6)

Now, it is evident that the yield polyhedron is fully specified by its
vertices and that, regardless of the yield condition, each vertex is
specified by giving values of the four pure numbers Np/NO" Mp/MO"
Therefore, if (5.5) holds and if the same material yield condition is
used for the sandwich and uniform shells, all vertices of the yield
polyhedron will lie on the yield surface. Since the polyhedron and

_ Yield surface are both convex, it follows that the polyhedronmust . ... ..
lie inside the yield surface. Therefore, the yield polyhedron for the

sandwich shell defined by (5. 6) will provide a lower bound on the
vield-point load for a uniform shell with the same material yield

condition.

A different result is obtained if we visualize taking the uniform
shell, leaving its thickness unchanged, but compressing all of its

material into its top and bottom surfaces. Thus
[ B ]
h =h G t =-}¢roh (4.7)

whence

NNy My =2 (4.8

For any state of stress this sandwich shell will be as strong as the
uniform shell in resisting moments. It follows that the resulting yield
polyhedron must lie outside of the yield surface. Therefore, the sand-
wich shell defined by (5. 7) will provide an upper bound for a uniform
shell with the same material yield condition.
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It is convenient to define dimensionless generalized stresses
in terms of the paramet ers of the uniform shell by
ng=Ng /Ny = (05" + 05 7)/(205) '
= = ..t
mg= M'g /MO (“p ] )/(Zka'o ) (5.9)
where

k =1 for the shell of (5. 6) )
(5. 10)
k =} for the shell of (5.7)

The stresses can then be written in the form

+ '
L 9 % =ngt kmg . . A8l .

L

Substitution of (5. 11) into the yield condition will give a circumscrib-

ing polyhedron for k = 4 and an inscribing one for k = 1,

An alternative circumscribing polyhedron can be obtained
without reference to a sandwich shell. We observe that if the stresses
in a uniform shell must satisfy a set of linear inequalities of the

form L, ("p /a‘o)s 0, then the generalized stresses must satisfy
Li (nﬁ)s 0 Li (mB }so (5.12)

together with further inequalities which represent the interaction be-
tween force and moment. Since the yield surface is constrained by
(5. 12) as well as further inequalities, it follows that the convex poly-
hedron (5. 12) must circumscribe the yleld surface. We shall refer
to it as the limited interaction polyhedron.

For plane stress 0y = 0, Tresca's yield condition (5. 1) reduces to

]
max [logh 10,1, lo,-0, 1 ]/o, =1 (5. 13)

e v
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This must be satisfied by both the top and bottom sheets of the sandwich
shell. Therefore, it follows from (5. 11) with k = 1, that
max[lnﬁ|+|mﬂ|. lnl-nzl+|ml-m2|]=l (5. 14)

is a lower bound for any material yield condition with tensile yield stress

For the maximum reduced stress condition with 0‘3 = 0 we obtain

max [ lo -ogl, {40, n/oo' =1,&,8= 1, 2;a B (5. 15)

whence, in view of (5.11) with k,?,,%, .

o v et A T e

max [In -dngl +3 1 m -dmgl, $linpn,l + 7 Imj+m,| : = 16)
5.1

The limited interaction polyhedron in this case is
max [ ln‘-i—nﬁ I, lm“-%mﬁ I, 31 nl+n2| ’ %|m1+m2|] =1
(8. 17)

Either of (5. 16) or (5. 17) provide upper bounds for any material yield

condition.

As discussed in [ 22] and [24) , a similar analysis in which the
roles of Tresca's and Hill's material conditions are essentially inter-
changed rhay be carried out for the case in which the single experimental

number is the shearing yield stress. |

WL ocironss s e
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6. EXAMPLE: CYLINDRICAL SHELL

For an axially symmetrically loaded circular cylindrical shell
we choose the axial direction x and circumferential direction 6
as principal directions 1 and 2 respectively. Acco;'»rding to the usual
assumptions of thin cylindrical shell theory, m, = m, is a reaction
and can be eliminated from the problem. Further, if axial load is
applied only at the end of the shell, the axial stress n_= t is constant
along the shell and can be regarded as a parameter. Thus, we can

reduce the various polyhedra to polygons in an ng =n, m_=m space.

e e ot AT BT ST U 8 ™
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" We consider first the form of the Tresca polygon. The inequali-

ties implied by (5. 14) can be written

-1-t 1-t
=m= (6. 1)
-1+t 14t
-14n 14n
«l-n len
-l+n-t4+m l4n-t+m
-l-n+t+m 1-n+t+m

In (6. 2), the value of m, is of no concern and it is necessary only to be
sure that each left-hand side is less than each right-hand side. Eliminating
the redundant and tautological members of the resulting set of 16 inequal-
ities plus the 4 inequalities of (4. 1) we obtain the 12 inequalities

-1 1
=n =< .
-1+t 1+t {6.3)

“tltls m= 1-1tl

-2+t = 2ntms= 22+t '

31
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Inequalities (6. 3) define a polyhedron in an n, m, t space which is
s;mmetric with respect to the m axis and the plane m =0, and
which inscribes the actual yield surface when the tensile yield stress
is known. The specific polygons for positive constant t and positive

m are

m=l"t (604)

The heavy curves in Fig. 6show typical polygons (6. 4).

A similar analysis may be made for the maximum reduced
stress polyhedron. Elimination of m, from (5. 16) leads to
-8+6ltl = 3m = 8-6|tl

-2+t 2+t
-4 + 4t =< 2n ={4+ 4t
-4 -2t 4-2t (6.5)
-12 + 10t 12 + 10t
=< 8n*3m=
-12 - ZtI 12 - 2¢

-8 +2t =4ni3m= 8 +2t
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For an upper bound on the tension-test measured shell, we
supplement (6. 5) with the inequalities obtained from (5. 17)

to obtain the polygons

0=<t=2/3 2/3=t=1

2n= -2 +t 2n= -4 + 4t
12 - 10t + 8n 12 - 10t + 8n

3m =}4 3m ={8 - 6t (6. 6)
12 -2t + 8n 12-2t- 8n

2n = 24t én=4-2t

L e

1=t=4/3
2n = - 4+4¢t
3m=8 -6t

2n = 4-2¢

shown by the light curves in Fig. 6.

The bounding yield curves for a cylindrical shell have been applied
to the problem of a cantilever shell under internal pressure [24) . Figure
7 shows the resulting bounds on the yield-point pressure as a function of
the dimensionless parameter

w = L/NAH
where A is the radius and 2H the shell thickness. Similar results when

the shearing yield stress is known are also given in [24] .
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7. LIMITATIONS AND EXTENSIONS

The aim of the preceding sections has been to give the theo-
retical background of a practical theory of plastic shells. Thus, we
have attempted neither to give a complete catalogﬁe of available
problem solutions, nor to give the most general possible theory.
With regard to problem solutions, a representative selection and

extensive bibliography may be found in [10].

Among the physically present physical concepts which have

elastic and plastic strains, the effect of strain-hardening,changes in
stress distributions due to small geometry changes induced by the

loads, and nonlinearities due to finite strains. Hodge and his associates
[25, 26, 27, 28] have considered various simple problems in which
elastic strains and strain-hardening were included. In every case
investigated, a representative load-deformation curve had the qualita-
tive form shown in Fig. 8 [25] . Based upon these examples, it appears
reasonable to assume that structures made of real material exhibit
qualitatively different behavior depending upon whether the load is above
or below the yield-point load of the same structure made of an idealized
rigid/perfectly-plastic material. Thus, if the purpose of the investigation
is to determine only the load value at which this qualitative difference
occurs, the rigid/perfectly-plastic model considered herein will provide
a reasonable estimate for the desired information. Further, Figure 8

indicates that if more detailed information is desired for loads less than

34
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the yield-point load, it is reasonable to neglect strain-hardening and
consider an elastic/perfectly-plastic material. Finally, for information

at loads above the yield-point load, elastic strains are relatively un-

important and one may use a rigid/strain-hardening material as a model.

The situation with regard to small and large geometry changes
is less clear. It has been shown by Haythornthwaite [ 29] that the be-
havibr of a beam whose ends are fully fixed as to both slope and
separation is quite different from one whose ends are clamped but

free to move towards each other under load. For the former,

even a small deformation o£ thg qzﬂ-’der of Iig,}fw_twl}erbeam height intro-

TIOR3 TS 280 0 PR e ey e 0 A5

duces axial forces which substantially raise the load-carrying capacity
of the beam. Similar results for circular plates were found by Onat

and Haythornthwaite [ 30].

The beam and circular plate problem have proved solvable
because of the fact that they deformed into easily characterized simple
shapgs. For other shell problems, the initial veloéity field at the
yield-point load predicts that elementary shell shapes such as spheres,
cones, or cylinders, deform into complex shapes which are not easily
characterized. Therefore, a general theory of the post-yield behavior
of shells must probably await a more general technique for determin-
ing the yield-point load. In view of the complexity of solutions for such
simple shapes as spheres or cones, it appears almost certain that any ‘
general approach must be primarily numerical. A first step in this
direction has been taken by Onat and L.ance [16] , for a shallow conical

shell, but it is not yet clear if their methods can be generalized.
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With regard to truly large deformations, the small-strain
theory presented herein is wholly inadequate. However, for very
thin shells, it does appear reasonable in this case to neglect bending
stresses entirely and construct a membrane theory of finite shell
deformation. This has been done by Salmon [31] for an initially
cylindrical shells Obviously more work remains to be done in this

area also.
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Figure 2.

Yield curve for rectangular beam
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Figure 3. Shell element
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Figure 5. Piecewise linear yield conditions
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